DEMO.DESIGN
Frequently Asked Questions
 
оглавление | demo party в ex-СССР | infused bytes e-mag | новости от ib/news | другие проекты | письмо | win koi lat

следующий фpагмент (2)
Introduction to Complex Variables by F. Greenleaf (QA 331 G73). Chrstopher Lusardi ----------------------------------------------------------------------------- z = a + bi polar form: r(cos theta + i sin theta) exponential form: r exp(i theta) cos theta = a/square-root(square(a) + square(b)) sin theta = b/square-root(square(a) + square(b)) [Notation: exp (i) = e to power i] ----------------------------------------------------------------------------- n (cos theta - i sin theta) = cos n theta + i sin n theta ----------------------------------------------------------------------------- cos theta = exp(i theta) + exp(-i theta) n ---------------------------- 2 sin theta = exp(i theta) - exp(-i theta) ---------------------------- 2 i ----------------------------------------------------------------------------- f(x) = exp(i x) = cos x + i sin x this can be written: f(x) = u(x) + i v(x) derivative of f(x) is: f'(x) = u'(x) + i v'(x) similarly: integral f(x) dx = integral u(x) dx + i integral v(x) dx ----------------------------------------------------------------------------- d 2 -- (z + z + 1) = 2z + 1 dz ----------------------------------------------------------------------------- b b integral (alpha times f)(t) dt = alpha integral f(t) dt a a if alpha is any complex number ----------------------------------------------------------------------------- d -- (exp(alpha x)) = alpha exp(alpha x) if alpha is any complex number dx integral exp(alpha x) dx = 1/2 exp(alpha x) + Constant alpha not equal 0 ----------------------------------------------------------------------------- exp (i theta) = 1 iff theta = 2 pi k ----------------------------------------------------------------------------- z = r exp(i theta) and w = p exp(i phi) are equal iff r = p and theta - phi = 2 pi k ----------------------------------------------------------------------------- |a + i b| = square-root(square(a) + square(b)) ----------------------------------------------------------------------------- exp(i pi) = cos pi + i sin pi = -1 exp(z + 2 pi i) = exp (z) exp(2 pi i) = cos 2 pi + i sin 2 pi = 1 n (exp(2 pi i/n)) = exp(2 pi i) = 1 Table: ........................................ |||theta = 0||theta = pi/4 || theta=pi/2||theta = pi|| theta = 3 pi/2 .......................................... exp(i theta) = ||| 1 || 1/square-root(2)(1 + i)||i ||-1 || -i .......................................... exp(x + i y) = exp(x)(cos y + i sin y) = (exp(x) cos y) + i(exp(x) sin y) ------------------------------------------- exp(z + w) = exp(z) exp(w) exp(-z) = 1/exp(z) exp(w - z) = exp (w)/exp(z) exp(-i theta) = 1/exp(i theta) exp(i theta) = 1 iff theta = 2 pi k, for k = ... -2,-1,0,1,2,... --------------------------------------------- e(z) is periodic when the variable is translated by 2 pi i: exp(z + 2 pi i) = exp(z) forall z ---------------------------------------------- A complex number Wo is called a period for a function f(z) if we have f(z + Wo) = f(z) forall z; The numbers ... -2Wo,-Wo,0,Wo,2Wo,... are also periods. The numbers Wk = 2 pi k i are periods for exponential function. The exponential function has no other periods. This periodicity of exp(z) means that we know how exp(z) behaves everywhere in the plane once we know how it acts in any horizontal strip of width 2 pi: Eg: i y ^ 4 pi-|<. | . |. 2 pi-|< 0 | . <-----------------------|<--------------------> x | . -2 pi-|. | | V exp(u + i v) = exp(u) exp(i v) cos(z) has periods Zk = 2 pi k + i theta tan(z) has periods Zk = pi k + i theta tan z = sin z/cos z

Всего 1 фpагмент(а/ов) |пpедыдущий фpагмент (1)

Если вы хотите дополнить FAQ - пожалуйста пишите.

design/collection/some content by Frog,
DEMO DESIGN FAQ (C) Realm Of Illusion 1994-2000,
При перепечатке материалов этой страницы пожалуйста ссылайтесь на источник: "DEMO.DESIGN FAQ, http://www.enlight.ru/demo/faq".